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Plan

� Philosophy

� Language

� Wars

� Dollars

Not necessarily in that order.
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Challenge 1

Put N processes in a ring:

Send a simple message round the ring M times.

Increase N until the system crashes.

How long did it take to start the ring?

How long did it take to send a message?

When did it crash?

Can you create more processes in your
language than the OS allows?

Is process creation in your language faster than
process creation in the OS?
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Process creation times
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Message passing times
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They forgot concurrency

In languages like <noname> they forgot about
concurrency. It either wasn’t designed in from
the beginning or else it was added on as an
afterthought.

This doesn’t matter for sequential programs.

If your problem is essentially concurrent then this
is a fatal mistake.

But when you build something like a ...
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Web Server

� Red = yaws (Yet another web server, in Erlang, on NFS)
� Green = apache (local disk)
� Blue = Apache (NFS)
� Yaws throughput = 800 KBytes/sec up to 80,000 disturbing

processes)
� Apache misbehaves and crashes at about 4000 processes
� Details: http://yaws.hyber.org
http://www.sics.se/˜joe/apachevsyaws.html
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Philosophy

Concurrency Oriented Programming

� Processes are totally independent - imagine they
run on different machines

� Process semantics = No sharing of data =
Copy-everything message passing. Sharing
= inefficient (can’t go parallel) + complicated
(mutexes, locks, ..)

� Each process has an unforgeable name

� If you know the name of a process you can send
it a message

� Message passing is ”send and pray” you send
the message and pray it gets there

� You can monitor a remote process
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Pragmatics

A language is a COPL if:

� Process are truly independent

� No penalty for massive parallelism

� No unavoidable penalty for distribution

� Concurrent behavior of program same on all OSs

� Can deal with failure
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Why is COP Nice?

� The world is parallel

� The world is distributed

� Things fail

� Our brains intuitively understand parallelism
(think driving a car)

� To program a real-world application we observe
the concurrency patterns = no guesswork (only
observation, and getting the granularity right)

� Our programs are automatically scalable, have
automatic fault tolerance (if the program works at
all on a uni-processor it will work in a distributed
network)

� Make more powerful by adding more processors
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What is Erlang/OTP?

� Erlang = a new(ish) programming language

� OTP = a set of libraries (making an Erlang
application OS)

� New way of developing distributed fault-tolerant
applications (OTP)

� Battle tested in Ericsson and Nortel products.
AXD301, GPRS, SSL accelerator...

� Biggest COPL used to earn money in the world
...

� Developed and maintained by a very small team
... Björn, Klacke, Robert, Mike,...

� A tool for writing reliable applications
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Erlang

� Functional/single assignment

� Light weight processes

� Asynchronous message passing (send and pray)

� OS independent (true)

� Special error handling primitives

� Lists, tuples, binaries

� Dynamic typing

� Soft real-time GC

� Transparent distribution
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Erlang in 11 minutes

One minute per example.

� Sequential Erlang in 5 examples

� Concurrent Erlang 2 examples

� Distributed Erlang 1 example

� Fault-tolerant Erlang in 2 examples

� Bit syntax in 1 example
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Sequential Erlang in 5 examples

1 - Factorial

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1 ->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.
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3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15
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Concurrent Erlang in 2 examples

6 - Spawn

Pid = spawn(fun() -> loop(0) end)

7 - Send and receive

Pid ! Message,
.....

receive
Message1 ->

Actions1;
Message2 ->

Actions2;
...
after Time ->

TimeOutActions
end
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Distributed Erlang in 1 example

8 - Distribution

...
Pid = spawn(Fun@Node)
...
alive(Node)
...
not_alive(Node)
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Fault tolerant Erlang in 2 examples

9 - Catch/throw

...
case (catch foo(A, B)) of

{abnormal_case1, Y} ->
...

{’EXIT’, Opps} ->
...

Val ->
...

end,
...

foo(A, B) ->
...
throw({abnormal_case1, ...})

Distributed Systems Laboratory 17



Joe Armstrong COP

10 - Monitor a process

...
process_flag(trap_exit, true),
Pid = spawn_link(fun() -> ... end),
receive

{’EXIT’, Pid, Why} ->
...

end
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Bit syntax in 1 example

11 - Parse IP Datagram

Dgram is bound to the consecutive bytes of an
IP datagram of IP protocol version 4. We extract the
header and the data of the datagram:

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN,5).

DgramSize = size(Dgram),
case Dgram of
<<?IP_VERSION:4, HLen:4,
SrvcType:8, TotLen:16, ID:16, Flgs:3,
FragOff:13, TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32, DestIP:32, Body/binary>> when
HLen >= 5, 4*HLen =< DgramSize ->
OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>> = Body,

...
end.
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Behaviours

A universal Client - Server with hot code
swapping :-)

server(Fun, Data) ->
receive

{new_fun, Fun1} ->
server(Fun1, Data);

{rpc, From, ReplyAs, Q} ->
{Reply, Data1} = Fun(Q, Data),
From ! {ReplyAs, Reply},
server(Fun, Data1)

end.

rpc(A, B) ->
Tag = new_ref(),
A ! {rpc, self(), Tag, B},
receive

{Tag, Val} -> Val
end
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Programming Patterns

Common concurrency patterns:

Cast
A ! B

Event
receive A -> A end

Call (RPC)
A ! {self(), B},
receive
{A, Reply} ->
Reply

end

Callback
receive
{From, A} ->
From ! F(A)

end
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Challenge 2

Can we easily program tricky concurrency
patterns?

Callback within RPC
A ! {Tag, X}, g(A, Tag).

g(A, Tag) ->
receive

{Tag, Val} -> Val;
{A, X} ->
A ! F(X),
go(A, Tag)

end.

Parallel RPC
par_rpc([A,B,C], M)
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False encapsulation

Q:Should we hide the message passing of an
RPC inside a function stub?

A: No - can’t do parallel RPC’s

How do we implement parallel RPCs?

par_rpc(Ps, M) ->
Self = self(),
Tags = map(fun(I) ->

Tag = make_ref(),
spawn(fun() ->

Val = rpc(I, M),
Self ! {Tag, Val}

end),
Tag
end, Ps),

yield(Tags).

yield([]) ->
[];

yield([H|T]) ->
Val1 = receive {H, Val} -> Val end,
[Val1|yield(T)].
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Is Erlang an COPL?

Yes - ish.

Fine for LAN behind a firewall. Various security
policies need implementing for use in a WAN.
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Wars

� Erlang is secret (sssh .....)

� Erlang is slow ...

� Erlang banned in Ericsson (for new products) - it
wasn’t C++ :-)

� Erlang escapes (Open source)

� Erlang infects Nortel

� Erlang still used in Ericsson (despite ban)

� Erlang controls the world (or at least the BT
networks)
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Dollars

� AXD301

� GPRS

� Nortel SSL accelerator

� Bluetail - very successful Swedish IT startup
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AXD301

� ATM switch (Media gateway=AXD, Soft switch
(ENGINE) =AXD+AXE)

� 11% of world market = Market leader

� 99.9999999% reliability (9 nines) (31 ms. year!)

� 30-40 million calls per week

� World’s largest telephony over ATM network

� 1.7 million lines of Erlang

Distributed Systems Laboratory 27



Joe Armstrong COP

AXD Market share
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9 nines reliability
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High performance
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Alteon SSL Accelerator

Nortel networks press release 28 August, 2002

In the security arena, Infonetics Research
credited Nortel Networks with the #1 position in the
dedicated Secure Sockets Layer (SSL) appliance
market with 48 percent market share in the first half
of 2002, improving on the 41 percent market share
reported for first half of 2001.

Total market c. 42M$ (2002) growing to 60$M
2005 (Infonetics research)
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GPRS

� 45% of world market

� 79 commercial contracts

� 76% of code is in Erlang
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Recap

� The world is concurrent

� Things in the world don’t share data

� Things communicate with messages

� Things fail

Model this in a language
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Now you must ...

Make it easy for your users to program
concurrent, distributed fault-tolerant applications.
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