
Concurrency Oriented
Programming

in
Erlang

Joe Armstrong
Distributed Systems Laboratory

Swedish Institute of Computer Science
http://www.sics.se/˜joe/talks/ll2 2002.pdf

joe@sics.se

November, 9, 2002

Agner Krarup Erlang (1878 - 1929)

Joe Armstrong COP

Plan

� Philosophy

� Language

� Wars

� Dollars

Not necessarily in that order.

Distributed Systems Laboratory 1

Joe Armstrong COP

Challenge 1

Put N processes in a ring:

Send a simple message round the ring M times.

Increase N until the system crashes.

How long did it take to start the ring?

How long did it take to send a message?

When did it crash?

Can you create more processes in your
language than the OS allows?

Is process creation in your language faster than
process creation in the OS?

Distributed Systems Laboratory 2

Joe Armstrong COP

Process creation times

Distributed Systems Laboratory 3

Joe Armstrong COP

Message passing times

Distributed Systems Laboratory 4

Joe Armstrong COP

They forgot concurrency

In languages like <noname> they forgot about
concurrency. It either wasn’t designed in from
the beginning or else it was added on as an
afterthought.

This doesn’t matter for sequential programs.

If your problem is essentially concurrent then this
is a fatal mistake.

But when you build something like a ...

Distributed Systems Laboratory 5

Joe Armstrong COP

Web Server

� Red = yaws (Yet another web server, in Erlang, on NFS)
� Green = apache (local disk)
� Blue = Apache (NFS)
� Yaws throughput = 800 KBytes/sec up to 80,000 disturbing

processes)
� Apache misbehaves and crashes at about 4000 processes
� Details: http://yaws.hyber.org
http://www.sics.se/˜joe/apachevsyaws.html

Distributed Systems Laboratory 6

Joe Armstrong COP

Philosophy

Concurrency Oriented Programming

� Processes are totally independent - imagine they
run on different machines

� Process semantics = No sharing of data =
Copy-everything message passing. Sharing
= inefficient (can’t go parallel) + complicated
(mutexes, locks, ..)

� Each process has an unforgeable name

� If you know the name of a process you can send
it a message

� Message passing is ”send and pray” you send
the message and pray it gets there

� You can monitor a remote process

Distributed Systems Laboratory 7

Joe Armstrong COP

Pragmatics

A language is a COPL if:

� Process are truly independent

� No penalty for massive parallelism

� No unavoidable penalty for distribution

� Concurrent behavior of program same on all OSs

� Can deal with failure

Distributed Systems Laboratory 8

Joe Armstrong COP

Why is COP Nice?

� The world is parallel

� The world is distributed

� Things fail

� Our brains intuitively understand parallelism
(think driving a car)

� To program a real-world application we observe
the concurrency patterns = no guesswork (only
observation, and getting the granularity right)

� Our programs are automatically scalable, have
automatic fault tolerance (if the program works at
all on a uni-processor it will work in a distributed
network)

� Make more powerful by adding more processors

Distributed Systems Laboratory 9

Joe Armstrong COP

What is Erlang/OTP?

� Erlang = a new(ish) programming language

� OTP = a set of libraries (making an Erlang
application OS)

� New way of developing distributed fault-tolerant
applications (OTP)

� Battle tested in Ericsson and Nortel products.
AXD301, GPRS, SSL accelerator...

� Biggest COPL used to earn money in the world
...

� Developed and maintained by a very small team
... Björn, Klacke, Robert, Mike,...

� A tool for writing reliable applications

Distributed Systems Laboratory 10

Joe Armstrong COP

Erlang

� Functional/single assignment

� Light weight processes

� Asynchronous message passing (send and pray)

� OS independent (true)

� Special error handling primitives

� Lists, tuples, binaries

� Dynamic typing

� Soft real-time GC

� Transparent distribution

Distributed Systems Laboratory 11

Joe Armstrong COP

Erlang in 11 minutes

One minute per example.

� Sequential Erlang in 5 examples

� Concurrent Erlang 2 examples

� Distributed Erlang 1 example

� Fault-tolerant Erlang in 2 examples

� Bit syntax in 1 example

Distributed Systems Laboratory 12

Joe Armstrong COP

Sequential Erlang in 5 examples

1 - Factorial

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1 ->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.

Distributed Systems Laboratory 13

Joe Armstrong COP

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15

Distributed Systems Laboratory 14

Joe Armstrong COP

Concurrent Erlang in 2 examples

6 - Spawn

Pid = spawn(fun() -> loop(0) end)

7 - Send and receive

Pid ! Message,
.....

receive
Message1 ->

Actions1;
Message2 ->

Actions2;
...
after Time ->

TimeOutActions
end

Distributed Systems Laboratory 15

Joe Armstrong COP

Distributed Erlang in 1 example

8 - Distribution

...
Pid = spawn(Fun@Node)
...
alive(Node)
...
not_alive(Node)

Distributed Systems Laboratory 16

Joe Armstrong COP

Fault tolerant Erlang in 2 examples

9 - Catch/throw

...
case (catch foo(A, B)) of

{abnormal_case1, Y} ->
...

{’EXIT’, Opps} ->
...

Val ->
...

end,
...

foo(A, B) ->
...
throw({abnormal_case1, ...})

Distributed Systems Laboratory 17

Joe Armstrong COP

10 - Monitor a process

...
process_flag(trap_exit, true),
Pid = spawn_link(fun() -> ... end),
receive

{’EXIT’, Pid, Why} ->
...

end

Distributed Systems Laboratory 18

Joe Armstrong COP

Bit syntax in 1 example

11 - Parse IP Datagram

Dgram is bound to the consecutive bytes of an
IP datagram of IP protocol version 4. We extract the
header and the data of the datagram:

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN,5).

DgramSize = size(Dgram),
case Dgram of
<<?IP_VERSION:4, HLen:4,
SrvcType:8, TotLen:16, ID:16, Flgs:3,
FragOff:13, TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32, DestIP:32, Body/binary>> when
HLen >= 5, 4*HLen =< DgramSize ->
OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>> = Body,

...
end.

Distributed Systems Laboratory 19

Joe Armstrong COP

Behaviours

A universal Client - Server with hot code
swapping :-)

server(Fun, Data) ->
receive

{new_fun, Fun1} ->
server(Fun1, Data);

{rpc, From, ReplyAs, Q} ->
{Reply, Data1} = Fun(Q, Data),
From ! {ReplyAs, Reply},
server(Fun, Data1)

end.

rpc(A, B) ->
Tag = new_ref(),
A ! {rpc, self(), Tag, B},
receive

{Tag, Val} -> Val
end

Distributed Systems Laboratory 20

Joe Armstrong COP

Programming Patterns

Common concurrency patterns:

Cast
A ! B

Event
receive A -> A end

Call (RPC)
A ! {self(), B},
receive
{A, Reply} ->
Reply

end

Callback
receive
{From, A} ->
From ! F(A)

end

Distributed Systems Laboratory 21

Joe Armstrong COP

Challenge 2

Can we easily program tricky concurrency
patterns?

Callback within RPC
A ! {Tag, X}, g(A, Tag).

g(A, Tag) ->
receive

{Tag, Val} -> Val;
{A, X} ->
A ! F(X),
go(A, Tag)

end.

Parallel RPC
par_rpc([A,B,C], M)

Distributed Systems Laboratory 22

Joe Armstrong COP

False encapsulation

Q:Should we hide the message passing of an
RPC inside a function stub?

A: No - can’t do parallel RPC’s

How do we implement parallel RPCs?

par_rpc(Ps, M) ->
Self = self(),
Tags = map(fun(I) ->

Tag = make_ref(),
spawn(fun() ->

Val = rpc(I, M),
Self ! {Tag, Val}

end),
Tag
end, Ps),

yield(Tags).

yield([]) ->
[];

yield([H|T]) ->
Val1 = receive {H, Val} -> Val end,
[Val1|yield(T)].

Distributed Systems Laboratory 23

Joe Armstrong COP

Is Erlang an COPL?

Yes - ish.

Fine for LAN behind a firewall. Various security
policies need implementing for use in a WAN.

Distributed Systems Laboratory 24

Joe Armstrong COP

Wars

� Erlang is secret (sssh)

� Erlang is slow ...

� Erlang banned in Ericsson (for new products) - it
wasn’t C++ :-)

� Erlang escapes (Open source)

� Erlang infects Nortel

� Erlang still used in Ericsson (despite ban)

� Erlang controls the world (or at least the BT
networks)

Distributed Systems Laboratory 25

Joe Armstrong COP

Dollars

� AXD301

� GPRS

� Nortel SSL accelerator

� Bluetail - very successful Swedish IT startup

Distributed Systems Laboratory 26

Joe Armstrong COP

AXD301

� ATM switch (Media gateway=AXD, Soft switch
(ENGINE) =AXD+AXE)

� 11% of world market = Market leader

� 99.9999999% reliability (9 nines) (31 ms. year!)

� 30-40 million calls per week

� World’s largest telephony over ATM network

� 1.7 million lines of Erlang

Distributed Systems Laboratory 27

Joe Armstrong COP

AXD Market share

Distributed Systems Laboratory 28

Joe Armstrong COP

9 nines reliability

Distributed Systems Laboratory 29

Joe Armstrong COP

High performance

Distributed Systems Laboratory 30

Joe Armstrong COP

Alteon SSL Accelerator

Nortel networks press release 28 August, 2002

In the security arena, Infonetics Research
credited Nortel Networks with the #1 position in the
dedicated Secure Sockets Layer (SSL) appliance
market with 48 percent market share in the first half
of 2002, improving on the 41 percent market share
reported for first half of 2001.

Total market c. 42M$ (2002) growing to 60$M
2005 (Infonetics research)

Distributed Systems Laboratory 31

Joe Armstrong COP

GPRS

� 45% of world market

� 79 commercial contracts

� 76% of code is in Erlang

Distributed Systems Laboratory 32

Joe Armstrong COP

Recap

� The world is concurrent

� Things in the world don’t share data

� Things communicate with messages

� Things fail

Model this in a language

Distributed Systems Laboratory 33

Joe Armstrong COP

Now you must ...

Make it easy for your users to program
concurrent, distributed fault-tolerant applications.

Distributed Systems Laboratory 34

