
What is Needle?

Needle is an object-oriented functional programming language

with a multimethod-based OO system, and a static type sys-

tem with parameterized types and substantial ML-style type

inference.

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

1



The Static Typing Heresy

In exploratory programming:

• Bottom-up programming; design is discovered, not im-

posed

• Domain knowledge comes from trying to solve the prob-

lems

• Subproblems knitted together to build abstractions

Exploratory programming is easier in a statically typ ed lan-

guage with generic functions!

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

2



The Static Typing Heresy

In exploratory programming:

• Bottom-up programming; design is discovered, not im-

posed

• Domain knowledge comes from trying to solve the prob-

lems

• Subproblems knitted together to build abstractions

Exploratory programming is easier in a statically typed lan-

guage with generic functions!

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

3



What are generic functions and multimethods?

First, let’s look at classes in Needle.

class Thing {} // define a root class

class Rock(Thing) {}

class Paper(Thing) {}

class Scissors(Thing) {}

The curlies are just the place where you'd de�ne memb ers:

class Line {

start Point;

finish Point;

}

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

4



What are generic functions and multimethods?

First, let’s look at classes in Needle.

class Thing {} // define a root class

class Rock(Thing) {}

class Paper(Thing) {}

class Scissors(Thing) {}

The curlies are simply where you define members:

class Cons[a] (List) {

head a;

tail List[a];

}

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

5



What are generic functions and multimethods?

generic beats? (Thing, Thing) -> Boolean;

method beats? (x Rock, y Scissors) { true; }

method beats? (x Paper, y Rock) { true; }

method beats? (x Scissors, y Paper) { true; }

method beats? (x Thing, y Thing) { false; }

beats?(rock, rock) ⇒ false

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

6



Generic Functions and OO programming

In traditional OO, adding new methods to a class is unmod-

ular even if it’s possible.

generic inflammable? Thing -> Boolean;

method inflammable? (x Thing) { false }

method inflammable? (x Paper) { true }

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

7



Generic Functions and Functional Programming

Higher-order functions easily parameterize over behavior, but

they don’t parameterize over similar data types very well.

In Scheme:

(map function sequence) ;; for lists

(vector-map function sequence) ;; for vectors

(string-map function sequence) ;; for strings

In Needle:

generic map c < Sequence . (a -> b, c[a]) -> c[b];

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

8



Needle’s Type System

• Inspired by Bourdoncle and Merz’s ML-sub (1997) and

Bonniot (2001)

• Supports parametric types

• Supports type inference

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

9



Constrained Polymorphic Types

generic map c < Sequence . (a -> b, c[a]) -> c[b];

Type composed of two parts:

• ML-style type scheme

• Type constraints

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

10



Type scheme

A type scheme is:

• A nonpolymorphic class – Rock, Boolean

• any of a set of type variables – a, b, c

• A filled-in polymorphic class – List[List[Int]], a→ Boolean

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

11



Type constraints

Type constraints are conjunctions of subtype relationships;

limit which types are permitted to satisfy the type variables

in the type scheme.

generic negate a < Number . a -> a;

generic map c < Sequence . (a -> b, c[a]) -> c[b];

fun(seq) { map(negate, seq) }

// has type c < Sequence & a < Number . c[a] -> c[a]

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

12



How Type Inference Works

1. Top-down walk of each top-level expression’s AST

2. Generate types of subexpressions, combining their con-

straint sets.

3. Verify the constraints are satisfiable

4. Simplify the constraints

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

13



Type Inference in Action

We do type inference on all code that isn’t a generic decla-

ration, or the argument specializer list on a method.

let foo = fun (x, f, g, seq) {

if (x == 3) {

map(f, seq);

} else {

map(fun (x) { g(g(x)) }, seq)

}

};

has inferred type:

c < Sequence . (Integer, a -> a, a -> a, c[a]) -> c[a]

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

14



An Un-Simplified Type

The raw, unsimplified type of foo:

h < Number & (h, h) -> Boolean < (a, Integer) -> g & j < Sequence &

(k -> l, j[k]) -> j[l] < (b, d) -> i & n < Sequence &

(o -> p, n[o]) -> n[p] < (c, d) -> m &

(Boolean, f, f) -> f < (g, i, m) -> e . (a, b, c, d) -> e

After simplification:

c < Sequence . (Integer, a -> a, a -> a, c[a]) -> c[a]

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

15



Technical Commentary

• Generics support separate compilation

• Coverage/completeness tests independent of typecheck-

ing

• Everything but generics and method specializers have

types inferred

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

16



Generic functions and Exploratory Programming, Take 2

How does the combination of type inference and generics

really help?

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

17



Subproblems knitted together to build abstractions

Best way of composing subproblems is higher-order functions.

Static typing helps here, because:

• Easier catch errors when the compiler fails fast

• Easier to discover common patterns when you can see

the types

• Generic functions reduce necessary number of parameters

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

18



Domain knowledge comes from trying to solve problems

A type is a partial, approximate specification of a function.

Type inference means the compiler generate summaries for

you.

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

19



Bottom-up style; design is discovered, not invented

• ML makes it hard to extend datatypes, but easy to write

new behaviors

• Java makes it hard to add behaviors, but easy to extend

datatypes

• Functions grow behavior; classes grow data

• For exploratory programming you need both

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

20



Future Work

• Improve type simplification

• Add dynamic loading

• Add interfaces

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

21



Interfaces

In current Needle, generic printing might have the interface:

generic print a -> String;

method print (s String) { s }

method print (b Boolean) { if (b) { "true" } else { "false" } }

method print (o a) { raise Error(); }

Throwing an exception hurts safety.

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

22



Interfaces, continued

What we want is something like this:

interface Print(a) {

print a -> String;

}

generic print Print(a) . a -> String

String implements Print; // interfaces are added *post-hoc*

Boolean implements Print;

method print (s String) { s }

method print (b String) { if (b) { "true" } else { "false" } }

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

23



Interfaces

• Lets you add existing types to new protocols

• Fixes weakness of generic-function style – grouping meth-

ods.

• Idea stems from Haskell typeclasses.

• Implementation in progress.

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

24



How to get Needle

• Website at: http://www.nongnu.org/needle

• Mailing list at:

http://mail.nongnu.org/mailman/listinfo/needle-hackers

• Email me at: neelk@alum.mit.edu

The Needle Programming Language – Neel Krishnaswami – neelk@alum.mit.edu

25


